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Abstract

In this paper, an image compression method imple-

mented for CVPR 2019 Challenge on Learned Image Com-

pression (CLIC) is introduced. It is designed to satisfy both

requirements of image compression, ”higher compression

ratio” and ”better quality”, at the same time. To this end, a

neural network based image quality enhancement is incor-

porated into the most recent traditional image/video coding

technique. The decoders, ETRIDGU, ETRIDGUlite, and

ETRIDGUfast, which implement the proposed image com-

pression method are designed to have different degrees of

complexity and compression efficiency. ETRIDGU, which

provides the highest compression efficiency, is reported to

achieve the 2nd highest PSNR in the lowrate track of CLIC.

ETRIDGUlite, which compromises between the compres-

sion efficiency and the complexity, is reported to be the

fastest one among the decoders with high mean opinion

score (MOS) in the same track.

1. Introduction

Image compression technology is everywhere in our

lives. It is inevitably used in almost all online services such

as information retrieval, education, shopping, and distribu-

tion services. In addition, individual users produce massive

amounts of image data every day with advanced mobile de-

vices, and consume them through online social network ser-

vices. Although widely used image compression technolo-
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gies such as JPEG, WebP, and BPG already exist, it is still

demanded to improve the image compression efficiency to

reduce data traffic and improve online service quality.

ISO/IEC Moving Picture Experts Group (MPEG) and

ITU-T Video Coding Experts Group (VCEG) have consti-

tuted the Joint Video Experts Team (JVET) to develop a

new video coding standard called Versatile Video Coding

(VVC). VVC is the next generation of video coding tech-

nology that is the successor to the existing High Efficient

Video Coding (HEVC).

On the other hand, compression artifacts such as block-

iness, ringing, and contouring appear in reconstructed im-

ages in lossy image/video compression based on block-

based prediction, transform, and quantization. To elimi-

nate these compression artifacts, VVC employs three in-

loop filters; deblock filter, sample adaptive offset (SAO),

and adaptive loop filter (ALF). However, at low bitrates,

it is very difficult to completely remove compression arti-

facts through these traditional filters. Through successful

studies over the last few years, it has been confirmed that

image/video restoration using deep neural network (DNN)

can be a breakthrough in solving this problem. JVET is ex-

ploring its applicability to the VVC standard by studying

the performance and complexity of neural network based

post- and in-loop filters through Core Experiment (CE) [6].

In this work, we have attempted to improve image com-

pression efficiency by incorporating the intra frame coding

of VVC with grouped residual dense network (GRDN) [5]

as a post-processing filter. As far as we know, this is a

combination of the best-performing traditional video cod-

ing algorithm that can also be used for image compression
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(a) Original (b) JPEG

(26.23 dB, 0.12 bpp)

(c) BPG (d) Proposed

(29.56 dB, 0.11 bpp) (30.83 dB, 0.10 bpp)

Figure 1. Comparison of image qualities between original, JPEG,

BPG, and the proposed. The differences are more evident when

zoomed in on the electronic version of this paper.

and one of the state-of-the-art DNN-based filters for image

restoration.

Fig. 1 compares qualities of compressed images from

JPEG, BPG, and the proposed method to the original image.

For the purpose of comparison, an image was selected from

the CLIC testset and then compressed using each method.

While Fig. 1 is showing only a part of the selected image,

both PSNR and bpp are measured for the entire region. The

proposed method gives the highest PSNR and the best vi-

sual perception although it is compressed at the lowest bpp.

2. Pursuit of higher compression ratio and bet-

ter image quality

2.1. Intra frame coding in VVC

VVC extended the maximum Coding Tree Unit (CTU)

size and changed the block coding structure of those used

for HEVC to achieve higher coding efficiency from larger

coding blocks with more flexible partitioning; it supports

256x256 CTUs that can split using quadtree plus binary tree

(QTBT). Fig. 2(a) visualizes an example of QTBT block

partitioning of VVC.

The maximum transform size has also been extended to

64×64. Mode dependent non-separable secondary trans-

(a) (b)

Figure 2. Features of VVC for intra frame coding: (a) Example of

QTBT block partitioning, (b) 67 intra prediction modes; both (a)

and (b) are copied from [4]

forms and explicit multiple core transform for intra frame

coding are adopted in VVC. In addition, the following cod-

ing tools are introduced for more accurate intra prediction:

• 67 intra prediction modes; visualized in Fig. 2(b)

• Wide-angle intra prediction for non-square blocks

• Block size and mode dependent 4 tap interpolation fil-

ter

• Position dependent intra prediction combination

• Cross component linear model intra prediction

• Multi-reference line intra prediction

• Intra sub-partition

Thanks to above changes, it is reported that VVC out-

performs HEVC in terms of Bjontegaard (BD) rate gain

for Y-PSNR by 21.23% when the latest VVC test model

(VTM) [2] is compared to the latest HEVC test model (HM)

model (HM) [1] for intra frame coding [3].

2.2. Coding artifact reduction with GRDN

GRDN [5] is employed in the proposed image compres-

sion method for effective removal of compression artifacts.

It showed the best performance in the NTIRE 2019 Real

Image Denoising Challenge - Track 2: sRGB. Fig. 3 vi-

sualizes the architecture of GRDN used for this work. A

GRDN consists of cascading grouped residual dense blocks

(GRDBs) followed by a convolutional block attention mod-

ule (CBAM) [8]. To enable effective learning of a deeper

and wider network, the proposed GRDN employs down-

sampling and up-sampling, respectively before and after

passing through GRDB, besides a global skip connection.

In the bottom left of Fig. 3, a GRDB consists of a number of

residual dense blocks (RDBs) [9] followed by a concatena-

tion and an 1×1 convolution layer. Not only are the GRDBs



Figure 3. The architecture of the GRDN used for compression artifact reduction. This figure is redrawn from its original version [5].

ETRIDGU ∼lite ∼fast

Down-sampling ×1/2 ×1/2 ×1/4

# of RDBs 16 16 4

# of 3×3 conv. 8 8 2

# of filters 80 64 8

Patch size 96×96 48×48 48×48

PSNR (dB) 31.18 31.16 30.82

MS-SSIM 0.9566 0.9565 0.9535

MOS - 3.6360 -

Dec. time (sec.) 2532.30 1891.83 930.95

Dec. size (MB) 487.86 312.53 1.07

Table 1. Comparison of specifications and test results between the

submitted models.

connected in series, their output features are also concate-

nated together before they are passed to the 1×1 convolu-

tion. As shown in the bottom right of Fig. 3, an RDB has

densely connected 3×3 convolutions each of which is acti-

vated by a rectified linear units (ReLU). Finally, a CBAM

introduced in [8] is employed to improve the compression

artifact removal performance of GRDN just before the out-

put convolutional layer. Further information on GRDN can

be found in [5].

2.3. Implementation

To implement the proposed image codec, we integrated

the VVC Test Model (VTM) [2] version 4.0 with GRDN.

For image encoding, the original image is first converted

its color format from RGB to YUV420 and fed into the

VTM for intra frame coding. Then, the reconstructed im-

age obtained from the VTM is converted its color format

from YUV420 back to RGB and transferred to a GRDN.

Finally, compression artifact reduction through the GRDN

is performed to obtain the final result image. A GRDN is

used for one or more quantization parameter (QP) values in

VVC; two images encoded with different QPs can be pro-

cessed by the same GRDN.

Three GRDNs with different complexities are imple-

mented and trained using PyTorch-1.0.1 running on two In-

tel Intel Xeon CPUs E5-2643 v4 @ 3.40 GHz with 64 GB

of DDR4 and four NVIDIA 1080ti GPUs. Table 1 shows

implementation details of the GRDN used for each submit-

ted decoder, ETRIDGU, ETRIDGUlite, and ETRIDGUfast.

Relative comparisons among the three decoders for required

amounts of memory and complexities can be made from Ta-

ble 1. They are designed to have four GRDBs as depicted

in Fig. 3. ETRIDGUfast performs 1/4 down-sampling to

speedup GRDB processing while the others performs 1/2

down-sampling. For the same purpose, ETRIDGUfast em-

ploys only four RDBs with two 3×3 convolutional layers

each of which has eight output channels. ETRIDGU and

ETRIDGUlite use 16 RDBs with eight 3×3 layers each of

them has 80 and 64 output channels, respectively.

3. Experiments

For training the GRDN, 1633 CLIC training images from

Dataset P (professional) and M (mobile) and 118,287 im-

ages of Microsoft COCO training dataset [7] are used to-

gether. Original images were first encoded through VTM-

4.0 [2] and then split into non-overlapping image patches

and used for GRDN training. As shown in Table 1, 96×96

patch size is used for training ETRIDGU while 48×48 is

used for training ETRIDGUlite and ETRIDGUfast; 96×96

patches result in slightly higher PSNR than 48×48 patches

at the cost of longer training time. The initial learning rate



Figure 4. R-D curve comparisons between ETRIDGU, VTM-4.0,

BPG, and JPEG.

for training GRDN was set to 0.0001 and decayed by half

for every 5 epochs after first 20 epochs while the training

was conducted up to 50 epochs.

Table 1 shows the test results of the submitted decoders

in terms of aggregated PSNR, average MS-SSIM, MOS,

and decoding time. The test results are measured for the

330 images of CLIC test dataset which are encoded at 0.15

bpp. ETRIDGU provides the highest coding efficiency at a

cost of the longest decoding time, and ETRIDGUfast pro-

vides the fastest decoding time at a cost of the lowest PSNR.

ETRIDGUlite can be regarded as a tradeoff between coding

efficiency and decoding time.

Fig. 4 compares the rate-distortion (R-D) curve of

ETRIDGU for the CLIC test dataset with those of BPG and

JPEG, based on aggregated PSNRs measured at a bitrate

range including 0.15 bpp. ETRIDGU results in 1.68 dB

and 5.7 dB higher PSNR compared to BPG and JPEG, re-

spectively. In addition, Fig. 4 also shows the RD-curve of

VTM-4.0 with the blue dashed line. ETRIDGU results in

0.6∼0.7dB higher PSNRs compared to VTM-4.0 over the

bitrate range; this improvement comes from the compres-

sion artifact reduction by the GRDN.

For the subjective image quality evaluation of the pro-

posed image compression method, Fig. 5 compares the im-

age obtained from ETRIDGU with the image obtained from

VTM-4.0 [2] without GRDN. Fig. 5(a) and Fig. 5(b) show

the same area of the two compressed images. The origi-

nal image was selected from the CLIC test dataset and then

compressed respectively at a bitrate of 0.33 bpp. Looking

at the blue boxes on Fig. 5(a), contouring and blocky arti-

facts are noticeable, even though the experimental image is

encoded to have a relatively high bpp. On the other hand, in

(a) VTM-4.0 recon. (b) Enhanced by GRDN

(32.97dB) (33.31 dB)

Figure 5. Image quality enhancement for a test image encoded in

0.33 bpp. The differences are more evident when zoomed in on

the electronic version of this paper.

Fig. 5(b), it can be seen that these artifacts are removed so

that they are not visually perceived.

4. Conclusion

In this paper, a DNN-based image compression method

submitted to the CLIC 2019 lowrate compression track

is introduced. The proposed method efficiently removes

the coding artifact of a VVC intra-coded image by post-

processing through GRDN. This ensures a high image com-

pression ratio and improved image quality in PNSR at the

same time. Implementation details and experimental results

of the three different decoders implemented using the pro-

posed method are described in this paper. Among them,

one with the best image compression performance achieved

the 2nd place in the highest PSNR while another one with

lower complexity took the 1st place in the fastest decoder

providing high MOS in the CLIC 2019.
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